321 research outputs found

    Tomorrow optical interferometry: astrophysical prospects and instrumental issues

    Get PDF
    Interferometry has brought many new constraints in optical astronomy in the recent years. A major leap in this field is the opening of large interferometric facilities like the Very Large Telescope Interferometer and the Keck Interferometer to the astronomical community. Planning for the future is both easy --most specialists know in which directions to develop interferometry-- and difficult because of the increasing complexity of the technique. I present a short status of interferometry today. Then I detail the possible astrophysical prospects. Finally I address some important instrumental issues that are decisive for the future of interferometry.Comment: 8 pages, invited review at the "Visions in IR astronomy" conference held in Paris, 21-23 March 200

    Phase closure nulling of HD 59717 with AMBER/VLTI . Detection of the close faint companion

    Full text link
    Aims: The detection of close and faint companions is an essential step in many astrophysical fields, including the search for planetary companions. A new method called "phase closure nulling" has been proposed for the detection of such faint and close companions based on interferometric observations when the system visibility amplitude is close to zero due to the large diameter of the primary star. We aim at demonstrating this method by analyzing observations obtained on the spectroscopic binary HD 59717. Methods: Using the AMBER/VLTI instrument in the K-band with ~1500 spectral resolution, we record the spectrally dispersed closures phases of the SB1 binary HD 59717 with a three-baseline combination adequate for applying phase closure methods. After a careful data reduction, we fit the primary diameter, the binary flux ratio, and the separation using the phase closure data. Results: We detect the 5-mag fainter companion of HD 59717 at a distance of 4 stellar radii from the primary. We determine the diameter of the primary, infer the secondary's spectral type and determine the masses and sizes of the stars in the binary system. This is one of the highest contrasts detected by interferometry between a companion and its parent star. Based on observations collected at the European Southern Observatory, Paranal, Chile, within the commissioning programme 60.A-9054(A)

    Prospects for near-infrared characterisation of hot Jupiters with VSI

    Full text link
    In this paper, we study the feasibility of obtaining near-infrared spectra of bright extrasolar planets with the 2nd generation VLTI Spectro-Imager instrument (VSI), which has the required angular resolution to resolve nearby hot Extrasolar Giant Planets (EGPs) from their host stars. Taking into account fundamental noises, we simulate closure phase measurements of several extrasolar systems using four 8-m telescopes at the VLT and a low spectral resolution (R = 100). Synthetic planetary spectra from T. Barman are used as an input. Standard chi2-fitting methods are then used to reconstruct planetary spectra from the simulated data. These simulations show that low-resolution spectra in the H and K bands can be retrieved with a good fidelity for half a dozen targets in a reasonable observing time (about 10 hours, spread over a few nights). Such observations would strongly constrain the planetary temperature and albedo, the energy redistribution mechanisms, as well as the chemical composition of their atmospheres. Systematic errors, not included in our simulations, could be a serious limitation to these performance estimations. The use of integrated optics is however expected to provide the required instrumental stability (around 10^-4 on the closure phase) to enable the first thorough characterisation of extrasolar planetary emission spectra in the near-infrared.Comment: 10 pages, 8 figures, Proc. SPIE conference 7013 "Optical and Infrared Interferometry" (Marseille 2008

    Monte-Carlo radiative transfer simulation of the circumstellar disk of the Herbig Ae star HD 144432

    Full text link
    Studies of pre-transitional disks, with a gap region between the inner infrared-emitting region and the outer disk, are important to improving our understanding of disk evolution and planet formation. Previous infrared interferometric observations have shown hints of a gap region in the protoplanetary disk around the Herbig Ae star HD~144432. We study the dust distribution around this star with two-dimensional radiative transfer modeling. We compare the model predictions obtained via the Monte-Carlo radiative transfer code RADMC-3D with infrared interferometric observations and the {\SED} of HD~144432. The best-fit model that we found consists of an inner optically thin component at 0.21\enDash0.32~\AU and an optically thick outer disk at 1.4\enDash10~\AU. We also found an alternative model in which the inner sub-AU region consists of an optically thin and an optically thick component. Our modeling suggests an optically thin component exists in the inner sub-AU region, although an optically thick component may coexist in the same region. Our modeling also suggests a gap-like discontinuity in the disk of HD~144432.Comment: 18 pages, 12 figure

    Integrated optics for astronomical interferometry. I. Concept and astronomical applications

    Full text link
    We propose a new instrumental concept for long-baseline optical single-mode interferometry using integrated optics which were developed for telecommunication. Visible and infrared multi-aperture interferometry requires many optical functions (spatial filtering, beam combination, photometric calibration, polarization control) to detect astronomical signals at very high angular resolution. Since the 80's, integrated optics on planar substrate have become available for telecommunication applications with multiple optical functions like power dividing, coupling, multiplexing, etc. We present the concept of an optical / infrared interferometric instrument based on this new technology. The main advantage is to provide an interferometric combination unit on a single optical chip. Integrated optics are compact, provide stability, low sensitivity to external constrains like temperature, pressure or mechanical stresses, no optical alignment except for coupling, simplicity and intrinsic polarization control. The integrated optics devices are inexpensive compared to devices that have the same functionalities in bulk optics. We think integrated optics will fundamentally change single-mode interferometry. Integrated optics devices are in particular well-suited for interferometric combination of numerous beams to achieve aperture synthesis imaging or for space-based interferometers where stability and a minimum of optical alignments are wished.Comment: 11 pages, 8 figures, accpeted by Astronomy and Astrophysics Supplement Serie

    Interferometric science results on young stellar objects

    Full text link
    Long-baseline interferometry at infrared wavelengths allows the innermost regions around young stars to be observed. These observations directly probe the location of the dust and gas in the disks. The characteristic sizes of these regions found are larger than previously thought. These results have motivated in part a new class of models of the inner disk structure, but the precise understanding of the origin of these low visibilities is still in debate. Mid-infrared observations probe disk emission over a larger range of scales revealing mineralogy gradients in the disk. Recent spectrally resolved observations allow the dust and gas to be studied separately showing that the Brackett gamma emission can find its origin either in a wind or in a magnetosphere and that there is probably no correlation between the location of the Brackett gamma emission and accretion. In a certain number of cases, the very high spatial resolution reveals very close companions and can determine their masses. Overall, these results provide essential information on the structure and the physical properties of close regions surrounding young stars especially where planet formation is suspected to occur.Comment: 18 pages, 6 figures, invited lecture at the VLTI school on "Astrometry and Imaging with the Very Large Telescope Interferometer", 2-13 June 2008, Keszthely, Hungary. v2: typos corrected; v3: reference adde
    corecore